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ABSTRACT

Researchers have begun to utilize heterogeneous knowledge graphs
(KGs) as auxiliary information in recommendation systems to mit-
igate the cold start and sparsity issues. However, utilizing a graph
neural network (GNN) to capture information in KG and further
apply in RS is still problematic as iffiSiunablertorsee eachritem’s
properties frommultiple’perspectives! To address these issues, we
propose the multi-view item network (MVIN), a GNN-based rec-
ommendation model which provides superior recommendations by
describing items from a unique mixed view from user and entity an-
gles. MVIN learns item representations from both the user view and
the entity view. From the user view, user-oriented modules score and
aggregate features to make recommendations from a personalized
perspective constructed according to KG entities which incorporates
user click information. From the entity view, the mixing layer con-
trasts layer-wise GCN information to further obtain comprehensive
features from internal entity-entity interactions in the KG. We evalu-
ate MVIN on three real-world datasets: MovieLens-1M (ML-1M),
LFM-1b 2015 (LFM-1b), and Amazon-Book (AZ-book). Results
show that MVIN significantly outperforms state-of-the-art methods
on these three datasets. In addition, from user-view cases, we find
that MVIN indeed captures entities that attract users. Figures further
illustrate that mixing layers in a heterogeneous KG plays a vital role
in neighborhood information aggregation.
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1 INTRODUCTION

Recommendation systems (RSs), like many other practical appli-
cations with extensive learning data, have benefited greatly from
deep neural networks. Collaborative filtering (CF) with matrix fac-
torization [14] is arguably one of the most successful methods for
recommendation in various commercial fields [17]. However, CF-
based methods’ reliance on past interaction between users and items
leads to the cold-start problem [19], in which items with no inter-
action are never recommended. To mitigate this, researchers have
experimented with incorporating auxiliary information such as social
networks [11], images [38], and reviews [43].

Among the many types of auxiliary information, knowledge
graphs!, denoted as KGs hereafter, have widely been used since
they can include rich information in the form of machine-readable
entity-relation-entity triplets. Researchers have successively utilized
KGs in applications such as node classification [6], sentence com-
pletion [13], and summary generation [15]. In view of the success
of KGs in a wide variety of tasks, researchers have developed KG-
aware recommendation models, many of which have benefited from
graph neural networks (GNNs) [24, 27, 28, 30, 31, 34, 35] which
capture high-order structure in graphs and refine the embeddings
of users and items. For example, RippleNet [24] propagates users’
potential preferences in the KG and explores their hierarchical inter-

kcen “<ests. Wang et al. [28] employ an KG graph convolutional network

(GCN) [12], which is incorporated in a GNN to generate high-order
item connectivity features. However, in these models, items look
identical to all users [24, 30, 35], and using GCN with KGs still has
drawbacks such as missing comparisons between entities of different
layers [1].

We further give some examples that explain the user view and the
entity view. Imagine some users are interested in books of the same
author, and other users are interested in a certain book genre, where
authorship and genre are two relations between the book and its
neighborhood (author, genre type) in the knowledge base. We can say
that in the real world every user has a different view of a given item.
In the entity-view, item representations are defined by the entities
connected to it in the KG. A sophisticated representation can be

'A knowledge graph is typically described as consisting of entity-relation-entity triplets,
where the entity can be an item or an attribute.


https://doi.org/10.1145/3397271.3401126
https://doi.org/10.1145/3397271.3401126
https://doi.org/10.1145/3397271.3401126
Amelia
减轻；

缓和

Amelia
Highlight

Amelia
Highlight

Amelia
Highlight

Amelia
Highlight

Amelia
KGCN

Amelia
Line


generated by incorporating smart operations of entities. For example,
this paper refines it by leveraging the layer-wise entity difference to
keep information from neighborhood entities. To illustrate the need
for this difference feature, imagine that we seek to emphasize a new
actor in a movie directed by a famous director, contrasting entities
related to the famous director at the second layer to the director at
the first layer will have stronger expressiveness than aggregating all
of the directors he has co-worked with back him.

Overall, there are still challenges with GNN-based recommen-
dation models: (1) user-view GNN enrichment and (2) entity-view
GCN refinement. In this paper, we investigate GNN-based recom-
mendation and propose a network that meets the above challenges.
We propose a knowledge graph multi-view item network (MVIN), a
GNN-based recommendation model equipped with user-entity and
entity-entity interaction modules. To enrich user-entity interaction,
we first learn the KG-enhanced user representations, using which
the user-oriented modules characterize the importance of relations
and informativeness for each entity. To refine the entity-entity inter-
action, we propose a mixing layer to further improve embeddings of
entities aggregated by GCN and allow MVIN to capture the mixed
GCN information from the various layer-wise neighborhood features.
Furthermore, to maintain computational efficiency and approach the
panoramic view of the whole neighborhood, we adopt a stage-wise
strategy [3] and sampling strategy [28, 36] to better utilize KG infor-
mation.

We evaluate MVIN performance on three real-world datasets: ML-
IM, LEM-1b, and AZ-book. For click-through rate (CTR) prediction
and top-N recommendation, MVIN significantly outperforms state-
of-the-art models. Through ablation studies, we further verity the
effectiveness of each component in MVIN and show that the mixing
layer plays a vital role in both homogeneous and heterogeneous
graphs with a large neighborhood sampling size. Our contributions
include:

e We enable the user view and personalize the GNN.

e We refine item embeddings from the entity view by a wide
and deep GCN which brings in layer-wise differences to high-
order connectivity.

e We conduct experiments on three real-world datasets with
KGs of different sizes to show the robustness and superiority
of MVIN.Z In addition, we demonstrate that MVIN captures
entities which identify user interests, and that layer-wise dif-
ferences are vital with large neighborhood sampling sizes in
heterogeneous KGs.

2 RELATED WORK

For recommendation, there are other models that leverage KGs, and
there are other models that consider interaction between users and
items. We introduce these below.

2.1 KG-aware Recommendation Models

In addition to graph neural network (GNN) based methods, there are
two other categories of KG-aware recommendation.

The first is embedding-based methods [4, 5, 10, 25, 39, 40], which
combine entities and relations of a KG into continuous vector spaces

2We release the codes and datasets at https://github.com/johnnyjana730/MVIN/

and then aid the recommendation system by enhancing the seman-
tic representation. For example, DKIN [26] fuses semantic-level
and knowledge-level representations of news and incorporates KG
representation into news recommendation. In addition, CKE [38]
combines a CF module with structural, textual, and visual knowl-
edge into a unified recommendation framework. However, these
embedding-based knowledge graph embedding (KGE) algorithms
methods are more suitable for in-graph applications such as link
prediction or KG completion rather than for recommendation [29].
Nevertheless, we still select [38] for comparison.

The second category is path-based methods [9, 21, 32, 37, 41],
which utilize meta paths and related user-item pairs, exploring pat-
terns of connections among items in a KG. For instance, MCRec [9]
learns an explicit representation for meta paths in recommendation.
In addition, it considers the mutual effect between the meta path and
user-item pairs. Compared to embedding-based methods, path-based
methods use the graph algorithm directly to exploit the KG structure
more naturally and intuitively. However, they rely heavily on meta
paths, which require domain knowledge and manual labor to process,
and are therefore poorly suited to end-to-end training [24]. We also
provide the performance of the state-of-the-art path-based model [9]
as a baseline for comparison.

2.2 User-Item Interaction

As users and items are two major entities involved in recommenda-
tion, many works attempt to improve recommendation performance
by studying user-item interaction.

For example, as a KG-aware recommendation model, Wang et
al. [28] propose KGCN, which characterizes the importance of the
relationship to the user. However, the aggregation method in KGCN
does not consider the informativeness of entities different from the
user. Hu et al. [8] propose MCRec, which considers users’ different
preferences over the meta paths. Nevertheless, it neglects semantic
differences of relations to users. Also, they do not employ GCN and
thus information on high-order connectivity is limited.

With their KG-free recommendation model, Wu et al. [33] con-
sider that as the informativeness of a given word may differ between
users, they propose NPA, which uses the user ID embedding as the
query vector to differentially attend to important words and news
according to user preferences. An et al. [2] consider that users typi-
cally have both long-term preferences and short-term interests, and
propose LSTUR which adds user representation into the GRU to
capture the user’s individual long- and short-term interests.

3 RECOMMENDATION TASK
FORMULATION

Here we clarify terminology used here and explicitly formulate
MVIN, the proposed GNN-based recommendation model.

In a typical recommendation scenario, the sets of users and items
are denoted as U = {uj,uz...} and V = {v1,v2...}, and the user-
item interaction matrix Y = {yyo | u € U,v € V} is defined
according to implicit user feedback. If there is an observed inter-
action between user u and item v, Y, is recorded as Yy, = 1;
otherwise y, = 0. In addition, to enhance recommendation quality,
we leverage the information in the knowledge graph G, which is
comprised of entity-relation-entity triplets {(h,r, t)|h,t € E,r € R}.
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Triplet (h, r, t) describes relations r from head entity & to tail entity ¢,
and & and R denote the set of entities and relations in G. Moreover,
an item v € V may be associated with one or more entities e in G;
N(v) refers to these neighboring entities around v. Given interaction
matrix Y and knowledge graph G, we seek to predict whether user u
has a potential interest in item v. The ultimate goal is to learn the
prediction function §,, = ¥ (u,v; 0, G), where 7,4, is the proba-
bility that user u engages with item v, and © stands for the model
parameters of function 7.

4 MVIN

We describe in detail MVIN, the proposed recommendation model,
shown in Figure 1, which enhances item representations through user-
entity interaction, which describes how MVIN collects KG entities
information from a user perspective, and entity-entity interaction,
which helps MVIN not only to aggregate high-order connectivity
information but also to mix layer-wise GCN information.

4.1 User-Entity Interaction

To improve the user-oriented performance, we split user-entity in-
teraction into user-oriented relation attention, user-oriented entity
projection, and KG-enhanced user representation.

4.1.1 User-Oriented Relation Attention. When MVIN collects
information from the neighborhood of the given item in the KG,
it scores each relation around the item in a user-specific way. The
proposed user-oriented relation attention mechanism utilizes the
information of the given user, item, and relations to determine which
neighbor connected to the item is more informative. For instance,
some users may think the film fron Man is famous for its main actor
Robert Downey Jr.; others may think the film Life of Pi is famous for
its director Ang Lee. Thus each entity of neighborhood is weighted
by dependent scores H'va,e’ where u denotes a different user; ry,
denotes the relation r from entity v to neighboring entity e (the
formulation of the scoring method is given below). We aggregate
the weighted neighboring entity embeddings and generate the final
user-oriented neighborhood information n as

n= Y A e (1)
eeN(v)
exp(rt, )

Ze’eN('u) exp(”}yv, o )

7 =m(v,e) = 2)
To calculate the neighbor’s dependent score 7, we first con-
catenate relation r € R®, item representation v € RS, and user
embedding u € R®, and then transform these to generate the final
user-oriented score 7% as
v, e
7., = Wr(concat([u,r,v])) + by, 3)

ro,
where W, € R and b, € R are trainable parameters.

4.1.2 User-Oriented Entity Projection. To further increase user-
entity interaction, we propose a user-oriented entity projection mod-
ule. For different users, KG entities should have different informa-
tiveness to characterize their properties. For instance, in a movie
recommendation, the user’s impression of actor Will Smith varies
from person to person. Someone may think of him as a comedian

due to the film Aladdin, while others may think of him as an ac-
tion actor due to the film Bad Boys. Therefore, the entity projection
mechanism refines the entity embeddings by projecting each entity e
onto user perspective u, where the projecting function can be either
linear or non-linear:

é=We(e+u)+b, 4)
é=o(We(e+u)+b) ©)

where W, and b, are trainable parameters and o is the non-linear
activation.

Thus the user-oriented entity projection module can be seen as
an early layer which increases user-entity interactions. Then, the
user-oriented relation attention module aggregates the neighboring
information in a user-specific way.

4.1.3 KG-Enhanced User Representation. To enhance the
quality of user-oriented information received from previous sec-
tions, we enrich user representations constructed according to KG
entities which incorporates user click information [24]. For example,
if a user watched I, Robot, we find I, Robot is acted by Will Smith,
who also acts in Men in Black and The Pursuit of Happyness. Captur-
ing user preference information from the KG relies on consulting all
relevant entities in KG and the connections between entities help us
to find the potential user interests. The extraction of user preference
also fits the proposed user-oriented modules; in the user’s mind, the
icon of a famous actor is defined not only by the movies they have
watched but also by the movies in the KG that the user is potentially
interested in. In our example, if the user has potential interests in
Will Smith, the modules would quickly focus on other films he acted.
In sum, the relevant KG entities model the user representation and
by KG-enhanced user representation, the user-oriented information
is enhanced as well.? The overall process is shown in Figure 2 and
Algorithm 1.

Algorithm 1: KG-Enhanced User Representation
1 KGUR (u):

2 forp=1,...,1,do

31 [ o E et it
4 Oou&zzh,-es,ﬂ ah;;

5 0, = concat([0%, 0}, ..., of,p]);
6 u = W,0, +by;

7L return u;

Preference Set We first initialize the preference set. For user u,
the set of items that the user has interacted with, V,, = {v|y,o = 1},
is treated as the starting point in G, which is then explored along the
relations to construct the preference set S;, as

&L = {tl(h,r,t) e Gandh e 'Y, p=1,2,...L,  (6)
where &% = V,; 8{1 records the p hop entities linked from entities
at previous p — 1 hop.

S = {(h,r,D)l(h,r,t) € Gandh e EL 'Y, p=1,2,.. 0, (7)

3In Section 5.4.2, this design helps MVIN to focus on entities which the user may show
interest in given the items that the user has interacted with.



!

e

(V&)

l

(¥, &)

(¥, 8x,)

!

UO(e) uom |

User-Entity Interaction

J 8 J

entity-entity - J
Entity-Entity Interaction

Figure 1: MVIN framework, which enhances item representations through user-entity and entity-entity interaction. For user-entity
interaction, it contains (a) user-oriented relation attention UO(r) and entity projection modules UO(e) to collect KG entity information
from a user perspective. For entity-entity interaction, the mixing layer allows MVIN not only to (a) aggregate high-order connectivity

information but also to (b) mix layer-wise GCN information.

Preferences SetS;;  Preferences Set S¥

(hrv)—>t

/ softmax \<

v)—=h

=
~

,
J

N T
h, (hy,1,11) | _’
) -0~ o

[ IV}
(=]
So

C

Uma)-0-cd C
(o8] (o))
I | I

Figure 2: KG-enhanced user representation in MVIN. At hop p,
user preference set S‘Z is propagated to generate user preference
responses oﬁ, after which all hops of user preference responses
are integrated to generate the KG-enhanced user representa-
tion u.

)
(=)
=]

\ J

where Sﬁ is the preference set at hop p. Note that 8{,’ is only tail
entities and 35 is the set of knowledge triples, p represents the
hop(s), and I, is the number of preference hops.

Preference Propagation The KG-enhanced user representation
is constructed by user preference responses 0,, generated by propa-
gating preference set Sy,.

First, we define at hop 0 the user preference responses 0(1.’ which is
calculated from the user-clicked items h; € Sbl,; taking into account
different items representations v assigns different degrees of impact

to the user preference response:

03 = Z aih; (8
hi €S}
a; = softmax;(Wg[h;, v]) )]

where W, is a trainable parameter.

Second, at hop p, where p > 0, user preference responses oﬁ are
computed as the sum of the tails weighted by the corresponding
relevance probabilities k; as

of = Z kiti p=1,2,.... 1, (10)
(hi,ri,ti)esfj
k; = softmax(v! R;h;) an

where h; € RS, R; € R¥*%, t; € R®, and v € R® are the embeddings
of heads h;, relations r;, tails t;, and item v. The relation space
embedding R helps to calculate the relevance of item representation
v and entity representation h.

After integrating all user preference responses of , We generate
the final preference embedding of user u € R* as

concat([og, 0%,, o ,off]), (12)

Wooy + by (13)

0y

u

where W, and b, are trainable parameters.

4.2 Entity-Entity Interaction

In entity-entity interaction, we propose layer mixing and focus on
capturing high-order connectivity and mixing layer-wise information.
We introduce these two aspects in terms of depth and width, respec-
tively; the overall process, combined with the method mentioned in
Section 4.1, is shown in Figure 1 and Algorithm 2.

For depth, we integrate user-oriented information obtained as de-
scribed in Section 4.1, yielding high-order connectivity information

to generate entity ffﬁ, and neighborhood information ﬁf‘,, followed



Algorithm 2: Layer Mixing

1 MixLayer (v, u):

2 e=0(W, -(e+u)+b.)),Ve € G;
3 é;"l — v,
4 forw=1,..., L, —1do
5 ford=1,...,13—-1do
6 for e € G do
=d ~u ard .
7 n,, < Ze’EN(e)”réyé/e w
8 el agg(ey, nd):
a - al a2 alaqyy.
9 el .. = M, (concat([&],, &,, ..., &2]);
10 return é} ;
— W

by aggregation as agg(-): R® x R® — R to generate the next-order
representation ¥4,

leveraging the layer-wise entity difference For width, to allow
comparisons between entities of different order [1], we mix the
feature representations of neighbors at various distances to further
improve the performance of subsequent recommendation.* Specif-
ically, at each layer, we utilize layer matrix M,, to mix layer-wise
GCN information (¥1,, if%‘,,...,\?ﬁ,) and generate the next wide layer

. . ~1
entity representation v, ; as

~ % =l

V«lw+1 = M,y (concat([¥},,¥2,,...,¥3]) (14)
Vo = agg(Vi i) = o(Wo (¥, + ) + o) (15)

where w = 1, ...,y — 1, d=1,2,...,l3-1; L and [§ are the number of

wide and deep hops, respectively; W;, and b,, are trainable parame-

ters.

4.3 Learning Algorithm

The formal description of the above training step is presented in Al-
gorithm 3. For a given user-item pair (u,v) (line 2), we first generate
the user representation u (line 7) and item representation v’ (line 8),
which are used to compute the click probability 7, as

Juv = o’ (V') (16)
where ¢’ is the sigmoid function.

To optimize MVIN, we use negative sampling [16] during training.
The objective function is

Nu
L= D) TWuvsduw)= ) Brmpond Guois Juv)+A I F
ueU V'Yuov=1 i=1

a7
where the first term 7 is cross-entropy loss, P is a negative sampling
distribution, and N* is the number of negative samples for user u;
N* = |{v : yyu = 1}/, and P follows a uniform distribution. The
second term is the L2 regularizer.

4.3.1 Fixed-size sampling. In a real-world knowledge graph,
the size of N(e) varies significantly. In addition, Sﬁ may grow too
quickly with the number of hops. To maintain computational effi-
ciency, we adopt a fixed-size strategy [28, 36] and sample the set of
entities for sections 4.1 and 4.1.3.

“4In Section 5.4.4, this is shown to help MVIN to improve results given large neighbor
sampling sizes.

For Section 4.1, we uniformly sample a fixed-size set of neighbors
N’(v) for each entity v, where N’(v) £ {ele ~ N(v)} and N (v)
denotes those entities directly connected to v, where |[N’(v)| =
K, and Kj, is the sampling size of the item neighborhoods and
can be modified.> Also, we do not compute the next-order entity
representations for all entities e € G, as shown in line 6 of Algorithm
2, and we sample only a minimal number of entities to calculate the
final entity embedding v’. Per Section 4.1.3, at hop p we sample user
preferences set Sg to maintain a fixed number of relevant entities,
where |S£| = K, and K, is the fixed neighbor sample size, which
can be modified.’

4.3.2 Stage-wise Training. To solve the potential issue that the
fixed-size sampling strategy may put limitation on the use of all
entities, recently stage-wise training has been proposed to collect
more entity-relation from KG to approach the panoramic view of
the whole neighborhood [22]. Specifically, in each stage, stage-wise
training would resample another set of entities to allow MVIN to
collect more entity information from KG. The whole algorithm of
stage-wise training is shown in the Algorithm 3 (Linell).

Algorithm 3: MVIN Learning
Input: Interaction matrix Y, knowledge graph G(&, R);
Output: Prediction function F(u, v|0, Y, G);
Regular Training:

Initialize all parameters;

1
2

3 Calculate preference set S,, for each user u;

4 Map neighborhood sample N’(v) for each node;

5 while MVIN has not converged do

6 for (u, v) in Y do

7 u «— KGUR(u);

8 v/ « MixLayer(v, u);

9 Calculate predicted probability g, = f(u,v’);
10 Update parameters by gradient descent;

11 Stage-wise Training:

12 Initialize all parameters;

13 Save embedding of G(&, R);

14 while MVIN has not converged do

15 Initialize all parameters;

16 Load previous embedding of G(&, R);

17 Re-sample S, and N'(v) according to Eq. (3)—(4);
18 Calculate Eq. (5)—(10);

19 Save best embedding of G(&, R);

4.3.3 Time Complexity Analysis. Per batch, the time cost for
MVIN mainly comes from generating KG-enhanced user represen-
tation and the mixing layer. The user representation generation has a
computational complexity of O([,K ms?) to calculate the relevance
probability k; for total of I, layers. The mixing layer has a compu-
tational complexity of O(Kp, lwlag2y 1o aggregate through the deep
layer I3 and wide layer L,,. The overall training complexity of MVIN
is thus O(lmes2 + Kphvlag?),

SWe discuss the performance changes when K, and K, vary.



ML-1M LFM-1b  AZ-book
Users 6,036 12,134 6,969
Items 2,445 15,471 9,854
Interactions 753,772 2,979,267 552,706
Avg user clicks 124.9 152.3 79.3
Avg clicked items 308.3 119.4 56.1
KG source Microsoft Satori ~ Freebase Freebase
KG entities 182,011 106,389 113,487
KG relations 12 9 39
KG triples 1,241,995 464,567 2,557,746

Table 1: Dataset statistics

Compared with other GNN-based recommendation models such
as RippleNet, KGCN, and KGAT, MVIN achieves a comparable
computation complexity level. Below, we set their layers to [ and the
sampling number to K for simplicity. The computational complexi-
ties of RippleNet and KGCN are O(IKs2) and O(K's?) respectively.
This is at the same level as ours because I,,1; is a special case of
1. However, for KGAT, without the sampling strategy, its attention
embedding propagation part should globally update the all entities
in graph, and its computational complexity is O(I|G|s).

We conducted experiments to compare the training speed of the
proposed MVIN and others on an RTX-2080 GPU. Empirically,
MVIN, RippleNet, KGCN, and KGAT take around 6.5s, 5.8s, 3.7s,
and 550s respectively to iterate all training user-item pairs in the
Amazon-Book dataset. We see that MVIN has a time consumption
comparable with RippleNet and KGCN, but KGAT is inefficient
because of the whole-graph updates.

5 EXPERIMENTS AND RESULTS

In this section, we introduce the datasets, baseline models, and
experiment setup, followed by the results and discussion.

5.1 Datasets

In the evaluation, we utilized three real-world datasets: ML-1M,
LFM-1b, and AZ-book which are publicly available [24, 28, 30]. We
compared MVIN with models working on these datasets coupled
with various KGs, which were built in different ways. For ML-1M,
its KGs were built by Microsoft Satori where the confidence level
was set to greater than 0.9. The KGs of LFM-1b and AZ-book were
built by title matching as described in [42]. The statistics of the three
datasets are shown in Table 1, and their descriptions are as follows:

e MovieLens-1M A benchmark dataset for movie recommen-
dations with approximately 1 million explicit ratings (ranging
from 1 to 5) on a total of 2,445 items from 6,036 users.

e LFM-1b 2015 A music dataset which records artists, albums,
tracks, and users, as well as individual listening events and
contains about 3 million explicit rating records on 15,471
items from 12,134 users.

e Amazon-book Records user preferences on book products.
It records information about users, items, ratings, and event
timestamps. This dataset contains about half a million explicit
rating records on a total of 9,854 items from 7,000 users.

We transformed the ratings into binary feedback, where each
entry was marked as 1 if the item had been rated by users; otherwise,
it was marked as 0. The rating threshold of ML-1M was 4; that is,
if the item was rated less than 4 by the user, the entry was set to

0. For LEM-1b and AZ-book, the entry was marked as 1 if user-
item interaction was observed. To ensure dataset quality, we applied
a g-core setting, i.e., we retained users and items with at least g
interactions. For AZ-book and LEM-1b, g was set to 20.

5.2 Baseline Models

To evaluate the performance, we compared the proposed MVIN with
the following baselines, CF-based (FM and NFM), regularization-
based (CKE), path-based (MCRec), and graph neural network-based
(GC-MC, KGCN, RippleNet, and KGAT) methods.

o FM [18] A widely used factorization approach for modeling
feature interaction. In our evaluations, we concatenated IDs
of user, item, and related KG knowledge as input features.

e NFM [7] A factorization-based method which seamlessly
combines the linearity and non-linearity of neural networks
in modeling user-item interaction. Here, to enrich the repre-
sentation of an item, we followed [7] and fed NFM with the
embeddings of its connected entities on KG.

e GC-MC [23] A graph-based auto-encoder framework for
matrix completion. GC-MC is a GCN-based recommendation
model which encodes a user-item bipartite graph by graph
convolutional matrix completion. We used implicit user-item
interaction to create a user-item bipartite graph.

e CKE [38] A regularization-based method. CKE combines
structural, textual, and visual knowledge and learns jointly
for recommendation. We used structural knowledge and rec-
ommendation component as input.

e MCRec [9] A co-attentive model which requires finer meta
paths, which connect users and items, to learn context repre-
sentation. The co-attention mechanism improves the repre-
sentations for meta-path-based context, users, and items in a
mutually enhancing way.

e KGCN [28] Utilizes GCN to collect high-order neighborhood
information from the KG. To find the neighborhood which the
user may be more interested in, it uses the user representation
to attend on different relations to calculate the weight of the
neighborhood.

¢ RippleNet [24] A memory-network-like approach which rep-
resents the user by his or her related items. RippleNet uses
all relevant entities in the KG to propagate the user’s repre-
sentation for recommendation.

¢ KGAT [30] A GNN-based recommendation model equipped
with a graph attention network. It uses a hybrid structure of
the knowledge graph and user-item graph as a collaborative
knowledge graph. KGAT employs an attention mechanism
to discriminate the importance of neighbors and outperforms
several state-of-the-art methods.

5.3 Experiments

5.3.1 Experimental Setup. For MVIN, [, =2, Ly = 1,13 =2,
Km=64 K, =8 1=1x10"7 for ML-IM; I, = 1, Iy, = 1, Ig
=2, Km =64, Kp =4, 1 =5x 1078 for LEM-1b; I, = 2, Iy, =
2,l4=2,Kpn=16,K, =8, 1 =1X 10~7 for AZ-book; We set
function o as ReLU. The embedding size was fixed to 16 for all
models except 32 for KGAT because it stacks propagation layers for
final output. For stage-wise training, average early stopping stage



Table 2: AUC and ACC results in CTR prediction on all datasets.

Model ML-IM

LFM-1b

AZ-book

AUC ACC AUC

ACC AUC ACC

FM 9101 (-2.3%)
NFM 9167 (-1.6%)
CKE 9095 (-2.4%)

.8328 (-2.9%)
.8420 (-1.8%)
.8376 (-2.3%)

MCRec  .8970 (-3.7%) .8262 (-3.6%)
KGNN 9093 (-2.4%)  .8338 (-2.7%)
RippleNet  .9208 (-1.2%) .8435 (-1.6%)

KGAT 9222 (-1.2%)
GC-MC  .9005 (-3.4%)

.8489 (-1.0%)
8197 (-4.4%)

.9052 (-6.3%)
9301 (-3.7%)
.9035 (-6.5%)
.8920 (-7.6%)
9171 (-5.0%)
9421 (-2.5%)
.9384 (-2.8%)
9204 (-4.7%)

.8602 (-5.6%) 7860 (-10.2%)  .7107 (-10.4%)
8825 (-3.2%)  .8206 (-6.2%) 7474 (-5.8%)
8591 (-5.7%)  .8070 (-7.8%) 7227 (-8.9%)
8428 (-7.5%) 7925 (-9.4%) 7217 (-9.1%)
.8664 (-4.9%)  .8043 (-8.1%) 7291 (-8.1%)
8887 (-2.5%)  .8234 (-5.9%) 7486 (-5.7%)
8771 (-3.7%)  .8555 (-2.2%) 7793 (-1.8%)
8723 (-4.3%) 8177 (-6.5%) 1347 (-7.4%)

MVIN 9318* (%) 8573* (%)

9658* (%)

9112%* (%) 8749% (%) 7935% (%)

Note: * indicates statistically significant improvements over the best baseline by an unpaired two-sample #-test with p-value = 0.01.
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Figure 3: Precision@N results in top-N recommendation.

number is 7, 7, 5 for ML-1M, LFM-1b and AZ-book, respectively.
For all models, the hyperparameters were determined by optimizing
AUC on a validation set. For all models, the learning rate n and
regularization weight were selected from [2x 1072, 1x 1072, 5x1073,
5% 1074, 2x 107%] and from [1x 1074, 1x 107>, 2x 107>, 2x 1077,
1x1077, 5 x 1078], respectively. For MCRec, to define several types
of meta paths, we manually selected user-item-attribute item meta
paths for each dataset and set the hidden layers as in [9]. For KGAT,
we set the depth to 2 and layer size to [16,16]. For RippleNet, we set
the number of hops to 2 and the sampling size to 64 for each dataset.
For KGCN, we set the number of hops to 2, 2, 1 and sampling size
to 4, 8, 8 for ML-1M, AZ-book, and LFM-1b, respectively. Other
hyperparameters were optimized according to validation result.

5.3.2 Experimental Results. Table 2 and Figure 3 are the results
of MVIN and the baselines, respectively (FM, NFM, CKF, GC-MC,
MCRec, RippleNet, KGCN, KGAT), in click-through rate (CTR)
prediction, i.e., taking a user-item pair as input and predicting the
probability of the user engaging with the item. We adopt AUC and
ACC, which are widely used in binary classification problems, to
evaluate the performance of CTR prediction. For those of top-N
recommendation, selecting N items with highest predicted click
probability for each user and choose Precision@N to evaluate the
recommended sets. We have the following observations:

e MVIN yields the best performance of all the datasets and
achieves AUC performance gains of 1.2% ,2.5%, and 2.2% on
ML-1M, LEM-1b, and AZ-book, respectively. Also, MVIN
achieves outstanding performance in top-N recommendation,
as shown in Figure 3.

o The two path-based baselines RippleNet and KGAT outper-
form the two CF-based methods FM and NFM, indicating that
KG is helpful for recommendation. Furthermore, although
RippleNet and KGAT achieve excellent performance, they
still do not outperform MVIN. This is because RippleNet
neither incorporates user click history items h% into user rep-
resentation nor does it introduces high-order connectivities,
and KGAT does not mix GCN layer information and not v
consider user preferences when collecting KG information.

o For the other baselines KGCN and MCRec, their relatively
bad performance is attributed to their not fully utilizing in-
formation from user click items. In contrast, MVIN would
first enrich a user representation by user click items and all
relevant entities in KG and then weighted the nearby entities
and emphasize the most important ones. Also, KGCN only
uses GCN in each layer, which does not allow contrast on
neighborhood layers. Furthermore, MCRec requires finer de-
fined meta paths, which requires manual labor and domain
knowledge.

e To our surprise, the CF-based NFM achieves good perfor-
mance on LFM-1b and AZ-book, even outperforming the
KG-aware baseline KGCN, and achieves results compara-
ble to RippleNet. Upon investigation, we found that this is
because we enriched its item representation by feeding the
embeddings of its connected entities. In addition, NFM’s de-
sign involves modeling higher-order and non-linear feature
interactions and thus better captures interactions between user
and item embeddings. These observation conform to [30].

e The regularization-based CKE is outperformed by NFM.
CKE does not make full use of the KG because it is only



regularized by correct triplets from KG. Also, CKE neglects
high-order connectivities.

o Although GC-MC has introduced high-order connectivity into
user and item representations, it achieves comparably weak
performance as it only utilizes a user-item bipartite graph and
ignores semantic information between KG entities.

5.4 Study of MVIN

We conducted an ablation study to verify the effectiveness of the
proposed components. We also provide an in-depth exploration of
the entity view.

5.4.1 User-Oriented Information. The ablation study results are
shown in Table 3. After removing the proposed user-oriented relation
attention UO(r) and user-oriented entity projection UO(e) modules,
MVIN, /6 vo(r) and MVINy, /o yo(e) perform worse than MVIN in
all datasets. Thus considering user preferences when aggregating
entities and relations in KG improves recommendation results.

a)  MVINy,/, yok) b) MVINy,/ vok)
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Figure 4: Attention visualization. We compare the attention
weights between a) MVIN,, /, yo(k) and (b) MVIN. Results show
that when information on user-interacted items is provided, (b)
MYVIN pays more attention to Kate Atkinson, the author which
the user may be interested in.

5.4.2 KG-enhanced User-Oriented Information. To enhance
user-oriented information, we enrich the user representation using
KG information as a pre-processing step. Here, we denote MVIN
without KG-enhanced user-oriented information as MVINy, /o yo(k)-
We compare the performance of MVIN and MVINy, /, yo(k)- Table 3
shows that the former outperforms the latter by a large margin,
which confirms that KG-enhanced user representation improves
user-oriented information.

Moreover, we conducted a case study to understand the effect
of KG-enhanced user-oriented information incorporated with user-
entity interaction. Given the attention weights learned by MVIN
w/oUO(k) 1n Figure 4(a), user usp4 puts only slightly more value
on the author of Life After Life. However, Figure 4(b) shows that
MVIN puts much more attention on the author when information
on user-interacted items is provided. Furthermore, in Figure 4(b),
we find user usz4’s interacted items—uvy34 (One Good Turn), v3gqq
(Behind the Scenes at the Museum), and vg19 (Case Histories)—are

all written by Kate Atkinson. This demonstrates that MVIN outper-
forms MVIN,, /, yo(k) because it captures the most important view
that user usg4 sees: item Life After Life, a book by Kate Atkinson.

5.4.3 Mixing layer-wise GCN information. In the mixing layer,
the wide part ML(w) allows MVIN to represent general layer-wise
neighborhood mixing. To study the effect of ML(w), we remove the
wide part from MVIN, denoted as MVINy, /o M (w)- Table 3 shows
a drop in performance, suggesting that the mixing of features from
different distances improves recommendation performance.

(a) —©—ML-IM —%—LFM-1b —A— AZ-book

5 045 4
(<]
=3 4
£ 0.35
o
0.25 A
FARMCE
0.15 . . .
(b) 8 12 16 nb size 32 64 128
0.45
3
5 035 -
£
O 0.25
2
<
0.15 . . .
8 12 16 ize 32 64 128
(C) nb size
. 09
3
s N
E 471
o
2
<
0.5 . . . .
8 12 16 np size 32 64 128

Figure 5: AUC improvement from MVIN,, /, p(w) to MVIN for
different neighborhood sampling sizes K;,, where the preference
set size K, is set to 16. With a large K;,, the performance gap
between MVIN and MVINy, /, M1 (w) increases, indicating the in-
dispensability of ML (w) for large K,,.

5.4.4 Mixing layer-wise GCN information (at high neighbor
sampling size K ). It has shown that in homogeneous graphs the
benefit of the mixing layer depends on the homophily level.® In
MVIN, the mixing layer works in KGs, i.e., heterogeneous graphs;
we also investigate its effect (ML(w)) at different sampling sizes of
neighborhood nodes K. With a large K, entities in KG connect to
more different entities, which is similar to a low homophily level.
Figure 5 shows that ML(w) is effective in heterogeneous graphs.
In addition, K, increases the performance gap between MVIN and
MVINy /o ML(w)- We conclude that the mixing layer not only im-
proves MVIN performance but is indispensable for large K.

5.4.5 High-order connectivity information. In addition to the
wide part in the mixing layer, the proposed deep part allows MVIN
to aggregate high-order connectivity information. Figure 3 shows
that after removing the mixing layer (ML), MVINy, /o pq, performs
poorly compared to MVIN, demonstrating the significance of high-
order connectivity. This observation is consistent with [27, 30, 36].

5.4.6 Stage-wise Training. Removing the stage-wise training
(SW) shown by MVIN, /sy deteriorates performance, showing
that stage-wise training helps MVIN achieve better performance
by collecting more entity relations from the KG to approximate a

The homophily level indicates the likelihood of a node forming a connection to a
neighbor with the same label.



Table 3: MVIN ablation study results. We evaluate using AUC in CTR prediction on all datasets and show the effect of the proposed
methods. User-oriented modules contain entity projection (UO(e)), relation attention (UO(r)), and KG-enhanced user-oriented in-
formation (UO(k)). Mixing layer has deep (ML(d)) and wide (ML(w)) parts. Stage-wise training (SW) is used as well. * indicates
statistically significant improvements by an unpaired two-sample ¢-test with p-value = 0.01.

. Components ML-1M LFM-1b AZ-book
Ablation component
UO() UOG) UOK) ML(w) ML) SW AUC AUC AUC
N/A v v v v v v 9318 .9658 .8739
wio UO(e) 4 v 4 v V' 9299 (-02%) 9617 (-0.4%)* 8672 (-0.8%)*
w/o UO(r) v 4 v vV 9305(-01%) 9638 (-02%) .8705 (-0.4%)*
w/o UO(K) v v v 4 V' 9247 (-0.7%)* 9598 (-0.6%)* .8573 (-1.8%)*
w/o ML(w) v 4 v 4 v\ 9289 (-03%)* 9621 (-0.4%)* .8683 (-0.6%)*
w/o ML V' 9283(-04%)* 9613 (-0.5%)* .8637 (-1.2%)*
w/o SW v v v v v 9276 (-0.5%)* 9567 (-0.9%)* 8642 (-1.1%)*

Table 4: AUC of MVIN with different preference set size K,,, and
neighbor sampling size K;,.

K,y size (K, = 4) 4 8 16 32 64
ML-1M 9210 .9247 9255 9269 .9276
LFM-1b 9299 9368 .9433 9498 .9567
AZ-book .8508 .8613 8616 .8642 .8631

Ky, size (K, = 16) 4 8 16 32 64
ML-IM 9246 9254 9258 .9264 .9252
LFM-1b 9427 9430 9433 9429 9415
AZ-book .8590 .8601 .8594 .8610 .8593

Table 5: AUC of MVIN with different number of [, L, and [g
hops, where K, is set to 16. For the Propagation layer, 0 hops
denotes that only the user-clicked items h} are utilized.

I, hops 0 1 2 3
ML-1IM | 9257 .9262 .9233 9244
LFM-1b | 9317 9438 9429 9415
AZ-book | .8557 .8576 .8555 .8572
Iy, hops 0 1 2 3
ML-1M n/a 9261 .9267 .9262
LFM-1b n/a 9438 9445 .9447
AZ-book | n/a 8568 8611 .8618

14 hops 0 1 2 3
ML-1M n/a 9261 .9269 .9250
LFM-1b n/a 9438 .9441 9440
AZ-book | n/a  .8552 .8621 .8613

Table 6: AUC of MVIN with different embedding size s.

s 4 8 16 32 64 128
ML-IM | 9037 .9217 9259 .9279 9250 .9247
LFM-1b | .9247 9468 9538 9574 9562 .9538
AZ-book | .8353 .8471 .8616 .8664 .8598 .8539

panoramic view of the whole neighborhood. Note that compared to
KGAT, the state-of-the-art baseline model which samples the whole
neighbor entities in KG, MVIN, /, sy refers to a limited number
of entities in KG but still significantly outperforms all baselines
(at p-value = 0.01), which confirms again the effectiveness of the
proposed MVIN.

5.5 Parameter Sensitivity

Below, we investigate the parameter sensitivity in MVIN.

Preference set sample size K,,. Table 4 shows that the perfor-
mance of MVIN improves when K, is set to a larger value, with
the exception of AZ-book. MVIN achieves the best performance on
AZ-book when K, is set to 32, which we attribute to its low number
of user-interacted items, as shown in Table 1. That is, when there
are few user-interacted items, a small K, still allows MVIN to find
enough information to represent the user.

Neighborhood entity sample size Ky. The influence of the size of
neighborhood nodes is shown in Table 4. MVIN achieves the best
performance when this is set to 16 or 32, perhaps due to the noise
introduced when K, is too large.

Number of preference hops l,. The impact of [, is shown in
Table 5. We conducted experiments with lp set to 0, that is, we
only use user-clicked items h} to calculate user representation. The
results show that when [, hop is set to 1, MVIN achieves the best
performance, whereas again larger values of [, result in less relevant
entities and thus more noise, consistent with [24].

Number of wide hops ly, and deep hops l4. Table 5 shows the
effect of varying the number of the wide hops I, and deep hops 1.
MVIN achieves better performance when the number of hops is set
to 2 over 1, suggesting that increasing the hops enables the modeling
of high-order connectivity and hence enhances the performance.
However, the performance drops when the number of hops becomes
even larger, i.e., 3, suggesting that considering second-order relations
among entities is sufficient, consistent with [20, 28].

Dimension of embedding size s. The results when varying the
embedding size are shown in Table 6. Increasing s initially boosts
the performance as a larger s contains more useful information of
users and entities, whereas setting s too large leads to overfitting.

6 CONCLUSION

We propose MVIN, a GNN-based recommendation model which
improves representations of items from both the user view and the
entity view. Given both user- and entity-view features, MVIN gathers
personalized knowledge information in the KG (user view) and fur-
ther considers the difference among layers (entity view) to ultimately



enhance item representations. Extensive experiments show the su-
periority of MVIN. In addition, the ablation experiment verifies the
effectiveness of each proposed component.

As the proposed components are general, the method could also
be applied to leverage structural information such as social networks
or item contexts in the form of knowledge graphs. We believe MVIN
can be widely used in related applications.
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